Towards good modelling practice for parallel hybrid models for wastewater treatment processes

Author:

Verhaeghe Loes123ORCID,Verwaeren Jan2ORCID,Kirim Gamze14ORCID,Daneshgar Saba3ORCID,Vanrolleghem Peter A.1ORCID,Torfs Elena1ORCID

Affiliation:

1. a modelEAU, Université Laval, 1065 avenue de la Médecine, Québec G1V 0A6, QC, Canada

2. b BIOVISM, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium

3. c BIOMATH, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium

4. d Cteau, Centre des technologies de l'eau, 696 Sainte Croix Ave., Saint-Laurent, Quebec H4L 3Y2, Canada

Abstract

ABSTRACT This study explores various approaches to formulating a parallel hybrid model (HM) for Water and Resource Recovery Facilities (WRRFs) merging a mechanistic and a data-driven model. In the study, the HM is constructed by training a neural network (NN) on the residual of the mechanistic model for effluent nitrate. In an initial experiment using the Benchmark Simulation Model no. 1, a parallel HM effectively addressed limitations in the mechanistic model's representation of autotrophic bacteria growth and the data-driven model's incapability to extrapolate. Next, different versions of a parallel HM of a large pilot-scale WRRF are constructed, using different calibration/training datasets and different versions of the mechanistic model to investigate the balance between the calibration effort for the mechanistic model and the compensation by the NN component. The HM can improve predictions compared to the mechanistic model. Training the NN on an independent validation dataset produced better results than on the calibration dataset. Interestingly, the best performance is achieved for the HM based on a mechanistic model using default (uncalibrated) parameters. Both long short-term memory (LSTM) and convolutional neural network (CNN) are tested as data-driven components, with a CNN HM (root-mean-squared error (RMSE) = 1.58 mg NO3-N/L) outperforming an LSTM HM (RMSE = 4.17 mg NO3-N/L).

Funder

Natural Sciences and Engineering Research Council of Canada

Onderzoeksprogramma Artifciële Intelligentie (AI) Vlaanderen

Publisher

IWA Publishing

Reference54 articles.

1. Tensorflow: A system for large-scale machine learning;Abadi,2016

2. Efficient automated quality assessment: Dealing with faulty on-line water quality sensors

3. Data to intelligence: The role of data-driven models in wastewater treatment

4. Borovykh A., Bohte S. & Oosterlee C. W. 2017 Conditional time series forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691.

5. A Review of the Artificial Neural Network Models for Water Quality Prediction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3