Restoring Abandoned Agricultural Lands in Cold Desert Shrublands: Tradeoffs between Water Availability and Invasive Species

Author:

Chambers Jeanne C.,Eldredge Eric P.,Snyder Keirith A.,Board David I.,Forbis de Queiroz Tara,Hubbard Vada

Abstract

AbstractRestoration of abandoned agricultural lands to create resilient ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant–soil–water relations, and controlling invasive species. We asked if improving water relations via irrigation or surface mulch would result in negative tradeoffs between native species establishment and invasive species competition. We examined the effects of sprinkler irrigation and straw mulch on native seed mixtures planted in two consecutive years in an abandoned agricultural field in a cold desert shrubland in southwestern Nevada, USA. Restoration effects differed among years because of contingency effects of growing season conditions. Precipitation was low during the first year and seeded plant density and biomass increased in response to irrigation. Precipitation was relatively high during the second year, seeded plant densities and biomass were generally high, and irrigation had inconsistent effects. Mulch increased native plant cover in the absence of irrigation during the dry year. Invasive plant biomass and cover also were influenced by year, but irrigation increased invasive plants regardless of precipitation. Positive effects of irrigation on seeded plant density, cover, and biomass outweighed negative tradeoffs of increases in invasive plants. In ecosystems with highly variable precipitation, the most effective restoration strategies will most likely be adaptive ones, requiring determination of timing and amount of irrigation based on precipitation, native plant establishment, and invasive species composition and abundance.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3