Distribution of Herbicide Resistances and Molecular Mechanisms Conferring Resistance in Missouri Waterhemp (Amaranthus rudisSauer) Populations

Author:

Schultz John L.,Chatham Laura A.,Riggins Chance W.,Tranel Patrick J.,Bradley Kevin W.

Abstract

A survey of soybean fields containing waterhemp was conducted just prior to harvest in 2012 to determine the scope and extent of herbicide resistance and multiple herbicide resistances among a sample of Missouri waterhemp populations. Resistance was confirmed to glyphosate and to acetolactate synthase (ALS), protoporphyrinogen oxidase (PPO), photosystem II (PSII), and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors, but not to 2,4-D. Of the 187 populations tested, 186 exhibited resistance to chlorimuron. The proportions of populations with atrazine or glyphosate resistance were similar, with 30 and 29% of the populations surviving the 3× rates. Lactofen resistance was observed in 5% of the populations, whereas mesotrione resistance was only found in 1.6% of the populations. All populations tested were susceptible to 2,4-D at the 3× rate. At least 52% of the waterhemp populations tested exhibited resistance to herbicides from two mechanism of action. Resistance to atrazine plus chlorimuron as well as glyphosate plus chlorimuron was present in 29% of the populations. Three-way resistance, primarily comprised of resistance to atrazine plus chlorimuron plus glyphosate, was present in 11% of the populations. Resistance to herbicides from four mechanisms of action was found in 2% of the populations, and one population exhibited resistance to herbicides from five mechanisms of action. DNA analysis of a subsample of plants revealed that previously documented mechanisms of resistance in waterhemp, including the ΔG210 deletion conferring PPO-inhibitor resistance, the Trp574Leu amino acid substitution conferring ALS-inhibitor resistance, and elevated 5-enolypyruvyl-shikimate-3-phosphate synthase copy number and the Pro106Ser amino acid substitution resulting in glyphosate resistance, explained survival in many, but not all, instances. Atrazine resistance was not explained by the Ser264Gly D1 protein substitution. Overall, results from these experiments indicate that Missouri soybean fields contain waterhemp populations with resistance to glyphosate, ALS-, PPO-, PSII-, and HPPD-inhibiting herbicides, which are some of the most common mechanisms of action currently utilized for the control of this species in corn and soybean production systems. Additionally, these results indicate that slightly more than half of the populations tested exhibit resistance to more than one herbicide mechanisms of action. Managing the current resistance levels in existing populations is of utmost importance. The use of multiple, effective herbicide modes of action, both preemergence and postemergence, and the integration of optimum cultural and mechanical control practices will be vital in the management of Missouri waterhemp populations in the future.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3