Dithiopyr Behavior in Smooth Crabgrass (Digitaria ischaemum) as Influenced by Growth Stage and Temperature

Author:

McCullough Patrick E.,de Barreda Diego Gómez,Sidhu Sudeep,Yu Jialin

Abstract

Dithiopyr provides PRE and early POST control of smooth crabgrass, but POST efficacy is often inconsistent on tillered plants. Experiments were conducted to evaluate the interaction of temperature and growth stage on dithiopyr efficacy, absorption, translocation, and metabolism in smooth crabgrass. In greenhouse experiments, I50(predicted rate to induce 50% injury) measured < 0.14, 0.14, and 0.15 kg ha−1at low temperatures (average 23 C) for multi-leaf, one-tiller, and multi-tiller smooth crabgrass, respectively, while I50measured < 0.14, 0.88, and > 2.24 kg ha−1at high temperatures (average 32 C), respectively. Multi-tiller (three to five tillers) smooth crabgrass absorbed more root applied14C-dithiopyr than multi-leaf (three to four leaves) and one-tiller plants, but specific radioactivity (Bq mg−1) was two to three times greater in multi-leaf plants compared to tillered plants. Smooth crabgrass treated at 15/10 C (day/night) had ≈ two times greater specific radioactivity following root applied14C-dithiopyr than at 30/25 C. Radioactivity distribution to shoots from root applications measured 43, 30, and 20% of the total absorbed for multi-leaf, one-tiller, and multi-tiller plants, respectively. Smooth crabgrass had two times more foliar absorption of14C-dithiopyr at 15/10 than 30/25 C while14C losses were greater at 30/25 than 15/10 C. Smooth crabgrass metabolism of14C-dithiopyr was ≈ two times greater at 30/25 than 15/10 C, and multi-leaf plants averaged 10 to 20% more metabolism than tillered plants at 7 d after treatment. Results suggest differential absorption, translocation, and metabolism may contribute to dithiopyr efficacy on smooth crabgrass at various growth stages, but use under high temperatures (30/25 C) could increase losses from volatilization, reduce foliar absorption, and increase metabolism compared to cooler temperatures (15/10 C).

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3