Rapid Evolution of Herbicide Resistance by Low Herbicide Dosages

Author:

Manalil Sudheesh,Busi Roberto,Renton Michael,Powles Stephen B.

Abstract

Herbicide rate cutting is an example of poor use of agrochemicals that can have potential adverse implications due to rapid herbicide resistance evolution. Recent laboratory-level studies have revealed that herbicides at lower-than-recommended rates can result in rapid herbicide resistance evolution in rigid ryegrass populations. However, crop-field-level studies have until now been lacking. In this study, we examined the impact of low rates of diclofop on the evolution of herbicide resistance in a herbicide-susceptible rigid ryegrass population grown either in a field wheat crop or in potted plants maintained in the field. Subsequent dose–response profiles indicated rapid evolution of diclofop resistance in the selected rigid ryegrass lines from both the crop-field and field pot studies. In addition, there was moderate level of resistance in the selected lines against other tested herbicides to which the population has never been exposed. This resistance evolution was possible because low rates of diclofop allowed substantial rigid ryegrass survivors due to the potential in this cross-pollinated species to accumulate all minor herbicide resistance traits present in the population. The practical lesson from this research is that herbicides should be used at the recommended rates that ensure high weed mortality to minimize the likelihood of minor herbicide resistance traits leading to rapid herbicide resistance evolution.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3