Shade Avoidance in Soybean Reduces Branching and Increases Plant-to-Plant Variability in Biomass and Yield Per Plant

Author:

Green-Tracewicz Emily,Page Eric R.,Swanton Clarence J.

Abstract

Recent studies have suggested that soybeans express shade avoidance in response to low red : far-red (R : FR) light reflected from neighboring plants and that this response may determine the onset and outcome of crop–weed competition. We tested the hypothesis that the low R : FR ratio would trigger characteristic shade avoidance responses in soybean and that the subsequent phenotype would experience reproductive costs under non–resource-limiting conditions. Soybeans were grown in a fertigation system in field trials conducted in 2007 and 2008 under two light quality treatments: (1) high R : FR ratio (i.e., weed-free) i.e., upward reflected light from a baked clay medium (Turface MVP®), or (2) low R : FR ratio (i.e., weedy) of upward reflected light, from commercial turfgrass. Results of this study indicated that a reduction in the R : FR ratio of light reflected from the surface of turfgrass increased soybean internode elongation, reduced branching, and decreased yield per plant. Shade avoidance also increased the plant-to-plant variability in biomass and yield per plant. Per plant yield losses were, however, more closely associated with reductions in biomass accumulation than population variability as the expression of a shade avoidance response did not influence harvest index. While these results suggest that weed induced shade avoidance decreases soybean per plant yield by reducing branching, it is possible the productivity of a soybean stand as a whole may be buffered against these reduction by a similar, but opposite, expression of plasticity in branching.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3