The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson's Disease

Author:

Tufekci Kemal Ugur1,Civi Bayin Ezgi1,Genc Sermin1,Genc Kursad1

Affiliation:

1. Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey

Abstract

Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases as strict regulation of integrated mitochondrial functions is essential for neuronal signaling, plasticity, and transmitter release. Many lines of evidence suggest that mitochondrial dysfunction plays a central role in the pathogenesis of Parkinson's disease (PD). Several PD-associated genes interface with mitochondrial dynamics regulating the structure and function of the mitochondrial network. Mitochondrial dysfunction can induce neuron death through a plethora of mechanisms. Both mitochondrial dysfunction and neuroinflammation, a common denominator of PD, lead to an increased production of reactive oxygen species, which are detrimental to neurons. The transcription factor nuclear factor E2-related factor 2 (Nrf2, NFE2L2) is an emerging target to counteract mitochondrial dysfunction and its consequences in PD. Nrf2 activates the antioxidant response element (ARE) pathway, including a battery of cytoprotective genes such as antioxidants and anti-inflammatory genes and several transcription factors involved in mitochondrial biogenesis. Here, the current knowledge about the role of mitochondrial dysfunction in PD, Nrf2/ARE stress-response mechanisms, and the evidence for specific links between this pathway and PD are summarized. The neuroprotection of nigral dopaminergic neurons by the activation of Nrf2 through several inducers in PD is also emphasized as a promising therapeutic approach.

Publisher

Hindawi Limited

Subject

Psychiatry and Mental health,Clinical Neurology,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3