1. Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T., Mastering Diverse Domains through World Models. arXiv:2301.04104 [cs, stat]. http://arxiv.org/abs/2301.04104. Accesses January 2023.
2. Sorokin, A., Buzun, N., Pugachev, L., and Burtsev, M., Explain my surprise: Learning efficient long-term memory by predicting uncertain outcomes, Adv. Neural Inf. Process. Syst., 2022, vol. 35, pp. 36875–36888.
3. Rodkin, I., Kuderov, P., and Panov, A.I., Stability and similarity detection for the biologically inspired temporal pooler algorithms, Procedia Comput. Sci., 2022, vol. 213, pp. 570–579.
4. Dzhivelikian, E., Kuderov, P., and Panov, A.I., Learning hidden Markov model of stochastic environment with bio-inspired probabilistic temporal memory, in Procedia Computer Science, 2023.
5. Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural Comput., 1997, vol. 9, pp. 1735–1780.