Influence of Neural Network Receptive Field on Monocular Depth and Ego-Motion Estimation

Author:

Linok S. A.,Yudin D. A.

Abstract

Abstract We present an analysis of a self-supervised learning approach for monocular depth and ego-motion estimation. This is an important problem for computer vision systems of robots, autonomous vehicles and other intelligent agents, equipped only with monocular camera sensor. We have explored a number of neural network architectures that perform single-frame depth and multi-frame camera pose predictions to minimize photometric error between consecutive frames on a sequence of camera images. Unlike other existing works, our proposed approach called ERF-SfMLearner examines the influence of the deep neural network receptive field on the performance of depth and ego-motion estimation. To do this, we study the modification of network layers with two convolution operators with extended receptive field: dilated and deformable convolutions. We demonstrate on the KITTI dataset that increasing the receptive field leads to better metrics and lower errors both in terms of depth and ego-motion estimation. Code is publicly available at github.com/linukc/ERF-SfMLearner.

Publisher

Allerton Press

Subject

Electrical and Electronic Engineering,General Computer Science,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Algorithms for Autonomous Vehicles;Handbook of Formal Optimization;2024

2. Machine Learning Algorithms for Autonomous Vehicles;Handbook of Formal Optimization;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3