Evaluating Day-Ahead Solar Radiation Forecasts from ICON, GFS, and MeteoFrance Global NWP Models
-
Published:2024-06
Issue:3
Volume:60
Page:491-500
-
ISSN:0003-701X
-
Container-title:Applied Solar Energy
-
language:en
-
Short-container-title:Appl. Sol. Energy
Author:
Narynbaev A. F.ORCID, Kremer V. A., Vaskov A. G.
Reference40 articles.
1. Kiseleva, S.V., Lisitskaya, N.V., and Frid, S.E., Photovoltaic power forecasting: Basic approaches and features, Al’tern. Energ. Ekol., 2020, vol. 8, no. 18, pp. 330–341. 2. Tina, G., Ventura, C., Ferlito, S., and De Vito, S., A state-of-art-review on machine-learning based methods for PV, Appl. Sci., 2021, vol. 11, p. 7550. 3. Aimeur, K.A., Saoud, L.S., and Ghorbani, R., Short-term solar irradiance forecasting and photovoltaic system management using octonion neural networks, App-l. Sol. Energy, 2020, vol. 56, pp. 219–226. 4. Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F.J., and Antonanzas-Torres, F., Review of photovoltaic power forecasting, Sol. Energy, 2016, vol. 136, pp. 78–111. 5. Ding, S., Li, R., and Tao, Z., A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting, Energy Convers. Manage., 2021, vol. 227, p. 113644.
|
|