Subject
Applied Mathematics,Control and Optimization,Analysis
Reference11 articles.
1. M. Balazard, E. Saias, and M. Yor, ‘‘Notes sur la fonction $$\zeta$$ de Riemann, 2,’’ Adv. Math. 143, 284–287 (1999). doi 10.1006/aima.1998.1797
2. A. A. Kondratyuk and A. M. Brudin, ‘‘On the Fourier series of the zeta-function logarithm on the vertical lines,’’ Mat. Stud. 22 (1), 97–104 (2004).
3. A. A. Kondratyuk and P. A. Yatsulka, ‘‘Summation of the Riemann zeta-function logarithm on the critical line,’’ in Proceedings of the Fourth Int. Conf. Analytic Number Theory and Spatial Fesselations Voronoy’s Impact on Modern Science, Kyiv, 2008, pp. 59–62.
4. Y. Y. Basiuk and S. I. Tarasyuk, ‘‘Fourier coefficients associated with the Rieman zeta-function,’’ Carpathian Math. Publ. 8 (1), 16–20 (2016). doi 10.15330/cmp.8.1.16-20
5. A. A. Kondratyuk, ‘‘A Carleman–Nevanlinna theorem and summation of the Riemann zeta-function logarithm,’’ Comput. Methods Funct. Theory 4, 391–403 (2004). doi 10.1007/BF03321076