1. Kabaldin, Yu.G., Shatagin, D.A., Anosov, M.S., et al., Iskusstvennyi intellect i kiber-fizicheskie mekhanoobrabatyvayushchie sistemy v tsifrovom proizvodstve: Monografiya (Artificial Intelligence and Cyber-Physical Machining Systems in Digital Manufacturing Processes: Monograph), Kabaldin, Yu.G., Ed., Nizhny Novgorod: Nizhegorod. Gos. Tekh. Univ., 2018.
2. Kabaldin, Yu.G., Bilenko, S.V., and Seryi, S.V., Upravlenie dinamicheskimi protsessami v tekhnologicheskikh sistemakh mekhanoobrabotki na osnove iskusstvennogo intellekta (Control of Dynamic Processes in Mechanical Processing Based on Artificial Intelligence), Komsomolsk-on-Amur: Komsomol’sk-na Amure Gos. Tekh. Univ., 2003.
3. Frankel, A. and Larsson, J., There is a better way: the digital twin increases the efficiency of engineering and technological design and production processes, CAD/CAM/CAE Observer, 2016, no. 3, pp. 36–40.
4. Shitikov, V.K. and Mastitskii, S.E., Klassifikatsiya, regressiya i drugie algoritmy Data Mining s ispol’zovaniem R (Classification, Regression, and Other Data Mining Algorithms Using R), Tolyatti, 2017.
5. White, T., Hadoop: The Definitive Guide, Cambridge: O’Reilly Media, 2009.