Incorporating Nigella sativa nanoemulsion into gelatin-guar gum films for enhanced healing of wound infections

Author:

Mutlu Neslihan1ORCID

Affiliation:

1. KAFKAS ÜNİVERSİTESİ

Abstract

Aim: This study aims to investigate the impact of incorporating Nigella sativa essential oil nanoemulsion (NSNE) into gelatin (Ge) and guar gum (GG)-based films at various concentrations (0%, 2%, 4%, and 6%) and to evaluate the antimicrobial properties of the resulting films against common bacterial strains associated with wound infections. Methods: The nanoemulsion (NE) was obtained through ultrasonic irradiation. Polydispersity index, zeta potential, and particle size of NE were measured. For film preparation, gelatin (Ge) and guar gum (GG) were used, incorporating NSNE at concentrations of 0%, 2%, 4%, and 6%. Mechanical properties were evaluated using an universal testing machine, film thickness with a micrometer, and crystalline structure through XRD analysis. SEM was utilized for microstructure examination, and hydrophobicity was assessed by contact angle measurements. Antimicrobial activity was determined via the disk diffusion method against bacteria relevant to wound infections. Statistical analysis employed one-way ANOVA and Tukey post hoc tests with a significance level set at 5%. Results: The particle size, polydispersity index (PDI), and zeta potential of the nanoemulsion were measured as 296±4.85 nm, 0.569±0.2, and -35.2±07 mV, respectively. The incorporation of NSNE into GE-GG-based films demonstrated promising antimicrobial efficacy against common wound infection bacteria, including Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae. The films maintained mechanical integrity, with no significant alterations in tensile strength (TS) and elongation at break (EAB) (p  0.05). However, higher NSNE concentrations led to decreased hydrophobicity (p < 0.05) and structural changes, as evidenced by increased pores and cracks observed in SEM images. Conclusion: This study highlight the potential of NSNE-containing films for wound healing applications, combining antimicrobial properties with a biocompatible film matrix.

Publisher

Journal of Health Sciences and Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3