In Silico Molecular Docking and ADMET Analysis for Drug Development of Phytoestrogens Compound with Its Evaluation of Neurodegenerative Diseases

Author:

Muslikh Faisal Akhmal1ORCID,Samudra Reyhan Rahma2,Ma’arif Burhan2ORCID,Ulhaq Zulvikar Syambani3ORCID,Hardjono Suko1,Agil Mangestuti1ORCID

Affiliation:

1. Universitas Airlangga

2. Universitas Islam Negeri Maulana Malik Ibrahim Malang

3. National Research and Innovation Agency Republic of Indonesia

Abstract

Neurodegenerative disease is one of the problems faced by postmenopausal women due to estrogen deficiency. Phytoestrogen compounds can be used as an alternative treatment for diseases caused by estrogen deficiency by binding to their receptors through the estrogen receptor (ER) dependent pathway. With in silico studies, this study aims to predict how phytoestrogen compounds will stop neurons from dying by using the dependent ER pathway. Genistein, daidzein, glycitein, formononetin, biochanin A, equol, pinoresinol, 4-methoxypinoresinol, eudesmin, α-amyrin, and β-amyrin compounds were prepared with ChemDraw Ultra 12.0. Then their pharmacokinetic and pharmacodynamic properties were examined using SwissADME. Geometry optimization of the compound was performed using Avogadro 1.0.1, and molecular docking of the compound to the ERα (1A52) and ERβ (5TOA) receptors was performed using AutoDock vina (PyRx 0.8). The interaction visualization stage was carried out with Biovia Discover Studio 2021, while the toxicity values of the compounds were analyzed using pkCSM and ProTox II. The results showed that the equol compound met the pharmacokinetic, pharmacodynamic, toxicity criteria, and had similarities with the native ligand 17β-estradiol. Equol compound inhibits neurodegeneration via an ER-dependent pathway by binding to ERα (1A52) and ERβ (5TOA) receptors.

Publisher

Universitas Muhammadiyah Palangkaraya

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3