Spatial position recognition method of semi-transparent and flexible workpieces: A machine vision based on red light assisted

Author:

Bi Q.L.,Lai M.L.,Chen K.,Liu J.M.,Tang H.L.,Teng X.B.,Guo Y.Y.

Abstract

In the automatic sorting process, overlapping translucent and flexible workpieces on the conveyor belt, blurring the imaging edge features of translucent and flexible workpieces is a challenge to locate the upper and lower workpieces spatially, we propose a method for locating translucent and flexible workpieces spatially under the overlapping environment in conjunction with the most common automatic sorting of translucent and flexible workpieces such as infusion tube drip buckets. Firstly, we propose a rectangular surface light source based on 650 nm band and monocular CCD for imaging translucent workpieces such as infusion tube drip buckets and optimize the imaging parameters. Secondly, we study a feature matching recognition algorithm for flexible workpieces that are prone to deformation, construct a mapping relationship between the position of overlapping layers and imaging quality of translucent and flexible workpieces such as infusion tube drip buckets based on clarity and information entropy, and establish The mapping relationship between the position of the overlapping layers and the imaging quality of translucent and flexible workpieces such as infusion tube drip buckets is constructed based on clarity and information entropy, and a local spatial coordinate conversion model is established. Finally, the spatial positioning coordinates of overlapping and non-overlapping translucent and flexible workpieces in the local coordinate system are identified, and the results show that the imaging method and theory can be effectively applied to the identification of overlapping and spatial positioning coordinates in the automatic sorting of translucent workpieces such as infusion tube drip buckets.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3