Time course of fluorescent-labelled oligonucleotide accumulation in cells with the use of folate receptor-targeted cationic liposomes

Author:

Shmendel E. V.1ORCID,Markov O. V.2ORCID,Zenkova M. A.2ORCID,Maslov M. A.1ORCID

Affiliation:

1. MIREA — Russian Technological University, Lomonosov Institute of Fine Chemical Technologies

2. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Abstract

INTRODUCTION. The use of cationic liposomes is a promising approach to the delivery of therapeutic nucleic acids to target cells because liposomes can protect nucleic acids from degradation by extracellular nucleases. However, to ensure selective delivery to the site of action, this approach needs modification, including liposome surface functionalisation with targeting ligands.AIM. This study aimed to compare the time courses of the accumulation of a fluorescent-labelled oligonucleotide (FITC-ODN), which simulated a nucleic acid-based medicinal product, in cells with the use of folate receptor-targeted (F) and conventional (L) cationic liposomes.MATERIALS AND METHODS. F- and L-liposomes were prepared using the polycationic amphiphile 2X3, the zwitterionic helper lipid DOPE, and the folate lipoconjugate F12. Physicochemical characterisation of the liposomes was performed using dynamic light scattering and transmission electron microscopy. Liposome–FITC-ODN complexes were formed at various nitrogen to phosphate (N/P) charge ratios. Flow cytometry, fluorescence microscopy, and confocal microscopy methods were used to study the accumulation of liposome–FITC-ODN complexes in human cervical carcinoma (KB-3-1) and human embryonic kidney (HEK 293) cells.RESULTS. The prepared F- and L-liposomes were spherical particles with a diameter of 75–100 nm. The authors selected the optimal N/P ratio of 2/1 to obtain complexes of F- and L-liposomes with the FITC-ODN. This N/P ratio yielded homogeneous liposome–FITC-ODN complexes having a polydispersity index below 0.200 and a size of 112.4–125.1 nm. F-liposomes were 25% more efficient than L-liposomes in FITC-ODN delivery to KB-3-1 cells at 90, 120, and 240 minutes after transfection. In the first few minutes of cell transfection, fluorescence and confocal microscopy data on the distribution of liposome–FITC-ODN complexes showed that cationic liposome fluorescence signals colocalised with FITC-ODN signals. Later, FITC-ODN accumulation in the cytoplasm was observed.CONCLUSIONS. Cationic liposomes demonstrated efficient FITC-ODN delivery into the cytoplasm of cancer cells. F-liposomes enhanced the percentage of transfected cells and improved FITC-ODN delivery compared with L-liposomes. The results obtained can be used in the further development of targeted medicinal products based on therapeutic nucleic acids and liposomes.

Publisher

SCEEMP

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3