Analysis of Intelligent English Chunk Recognition based on Knowledge Corpus

Author:

Zhang Mei

Abstract

Chunks play an important role in applied linguistics, such as Teaching English as a Second Language (TESL) and Computer-Aided Translation (CAT). Although corpora have already been widely used in the areas mentioned above, annotation and recognition of chunks are mainly done manually. Computer- and linguistic-based chunk recognition is significant in natural language processing (NLP). This paper briefly introduced the intelligent recognition of English chunks and applied the Recurrent Neural Network (RNN) to recognise chunks. To strengthen the RNN, it was improved by Long Short Term Memory (LSTM) for recognising English chunk. The LSTM-RNN was compared with support vector machine (SVM) and RNN in simulation experiments. The results suggested that the performance of the LSTM-RNN was always the highest when dealing with English texts, no matter whether it was trained using a general corpus or a corpus of specialised domain knowledge.

Publisher

International Association for Educators and Researchers (IAER)

Subject

Electrical and Electronic Engineering,General Computer Science

Reference20 articles.

1. Suchismita Maiti, Utpal Garain, Arnab Dhar and Sankar De, “A novel method for performance evaluation of text chunking”, Language Resources & Evaluation, Print ISSN: 1574-020X, Online ISSN: 1574-0218, pp. 215-226, Vol. 49, No. 1, 13rd August 2015, Published by Springer Nature B.V., DOI: 10.1007/s10579-013-9250-3, Available: https://link.springer.com/article/10.1007/s10579-013-9250-3.

2. Almira Fiana Dhara and Rully Agus Hendrawan, “Rancang Bangun Ekstraksi Ekspresi Kata Kerja pada Ulasan Pelanggan Dengan Text Chunking untuk Memaparkan Pengalaman Penggunaan Produk”, Jurnal Teknik ITS, Online ISSN: 2337-3539, Vol. 6, No. 2, September 2017, DOI: 10.12962/j23373539.v6i2.23151, Available: http://ejurnal.its.ac.id/index.php/teknik/article/view/23151.

3. Juan Luo and Yves Lepage, “Extraction of Potentially Useful Phrase Pairs for Statistical Machine Translation”, Journal of Information Processing, Online ISSN: 1882-6652, pp. 344-352, Vol. 23, No. 3, May 2015, Published by Information Processing Society of Japan Production services SANBI Printing Co. Ltd, DOI: 10.2197/ipsjjip.23.344, Available: https://www.jstage.jst.go.jp/article/ipsjjip/23/3/23_344/_article.

4. Seung-Hoon NA and Young-Kil KIM, “Phrase-Based Statistical Model for Korean Morpheme Segmentation and POS Tagging”, IEICE Transactions on Information & Systems, Print ISSN: 0916-8532, Online ISSN: 1745-1361, pp. 512-522, Vol. 101, No. 2, 1st February 2018, Published by J-stage, DOI: 10.1587/transinf.2017EDP7085, Available: https://www.jstage.jst.go.jp/article/transinf/E101.D/2/E101.D_2017EDP7085/_article.

5. Achintya Sarkar and Zheng-Hua Ta, “Self-Segmentation of Pass-Phrase Utterances for Deep Feature Learning in Text-Dependent Speaker Verification”, Computer Speech & Language, Online ISSN:0885-2308, Vol. 70, No. 6, November 2021, Published by Elsevier, DOI: 10.1016/j.csl.2021.101229, Available: https://www.sciencedirect.com/science/article/abs/pii/S088523082100036X.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3