Abstract
Rheumatology research often involves correlated and clustered data. A common error when analyzing these data occurs when instead we treat these data as independent observations. This can lead to incorrect statistical inference. The data used are a subset of the 2017 study from Raheel et al consisting of 633 patients with rheumatoid arthritis (RA) between 1988 and 2007. RA flare and the number of swollen joints served as our binary and continuous outcomes, respectively. Generalized linear models (GLM) were fitted for each, while adjusting for rheumatoid factor (RF) positivity and sex. Additionally, a generalized linear mixed model with a random intercept and a generalized estimating equation were used to model RA flare and the number of swollen joints, respectively, to take additional correlation into account. The GLM’s β coefficients and their 95% confidence intervals (CIs) are then compared to their mixed-effects equivalents. The β coefficients compared between methodologies are very similar. However, their standard errors increase when correlation is accounted for. As a result, if the additional correlations are not considered, the standard error can be underestimated. This results in an overestimated effect size, narrower CIs, increased type I error, and a smallerPvalue, thus potentially producing misleading results. It is important to model the additional correlation that occurs in correlated data.
Publisher
The Journal of Rheumatology
Subject
Immunology,Immunology and Allergy,Rheumatology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献