Bandwidth Limits in Hall Effect-based Current Sensors

Author:

Crescentini MarcoORCID,Marchesi Marco,Romani Aldo,Tartagni Marco,Traverso Pier Andrea

Abstract

<p class="Abstract"><span lang="EN-GB">Modern power applications are demanding for small and broadband current sensors. Hall sensors are a good solution, but practical implementations are limited to a few hundred kHz. The literature offers a theoretical knowledge about the dynamic effects acting on the Hall probe but does neither define nor experimentally assess the bandwidth fundamental upper limit, since many parasitic dynamic effects perturb the inherent time response of the Hall sensor. This paper experimentally investigates the bandwidth upper limits in CMOS Hall effect-based current sensors. Based on the physics-based description of the Hall probe, the paper defines a novel, special-purpose, measurement technique, which is able to experimentally evaluate the inherent response time of the Hall probe without triggering the main parasitic effects. The paper also propose an equivalent electrical model describing the dynamic response of the Hall probe so as to better explain and understood the measurement results. Specifically, the paper identifies two bandwidth upper limits: a fundamental limit set by the intrinsic capacitance, which models the transversal charge accumulation due to the Hall effect, and a more practical limit set by the capacitive input of the electronic readout interface. Some main parasitic effects are then assess and added in the proposed model.</span></p>

Publisher

IMEKO International Measurement Confederation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Instrumentation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3