Store-activated Ca2+ inflow in Xenopus laevis oocytes: inhibition by primaquine and evaluation of the role of membrane fusion

Author:

GREGORY Roland B1,BARRITT Greg J1

Affiliation:

1. Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, G.P.O. Box 2100, Adelaide, South Australia, 5001, Australia

Abstract

The role of membrane fusion in the activation of store-activated Ca2+ channels (SACCs) in the plasma membrane of Xenopus laevis oocytes was investigated with primaquine, an inhibitor of vesicle trafficking, reagents that disrupt the cytoskeleton, and reagents that activate or inhibit the functions of monomeric and trimeric GTP-binding regulatory proteins. Ca2+ inflow was assessed by measuring the rate of increase in the fluorescence of the intracellular Ca2+ chelator fluo-3 after the addition of extracellular Ca2+ to oocytes previously incubated in the absence of added Ca2+. Primaquine inhibited the 3-deoxy-3-fluoro-Ins(1,4,5)P3 (Ins(1,4,5)P3F)-stimulated increase in Ca2+o-induced fluo-3 fluorescence with no detectable effect on the release of Ca2+ from intracellular stores. The effect of primaquine was observed within 1.5 min, showed similarity to the inhibition induced by Gd3+, was reversible, and was observed when primaquine was added either before or after activation of the SACCs. The degree of inhibition of Ca2+ inflow by primaquine was halved when the extracellular concentration of Ca2+ was increased from 3.1 to 12.5 mM. Primaquine also inhibited Ca2+ inflow through cholera toxin-activated divalent cation channels and Drosophila Trpl channels (expressed in oocytes after injection of trpl cRNA). These results indicate that primaquine inhibits open SACCs, possibly by directly inhibiting Ca2+ flow through the channel pore. Colchicine plus cytochalasin B, Brefeldin A, the peptide Arf-1 (2–17) (introduced by microinjection), lovastatin or pertussis toxin did not inhibit the Ins(1,4,5)P3F-stimulated increase in fluo-3 fluorescence. In contrast, guanosine 5´-[γ-thio]triphosphate (GTP[S]), guanosine 5´-[β,γ-imido]triphosphate (p[NH]ppG) and AlF4-, but not guanosine 5´-[β-thio]diphosphate, inhibited the Ins(1,4,5)P3F-stimulated increase in fluo-3 fluorescence. Co-administration of GTP did not prevent the inhibition by GTP[S] or AlF4-. Staurosporine largely prevented the inhibition of store-activated Ca2+ inflow by GTP[S]. It is concluded that membrane fusion processes are unlikely to be involved in the link between the release of Ca2+ from the endoplasmic reticulum and activation of SACCs. The idea that this link is achieved by direct interaction of a protein(s) in the endoplasmic reticulum membrane with the SACC protein is briefly discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3