Regulation of protein synthesis and degradation in L8 myotubes. Effects of serum, insulin and insulin-like growth factors

Author:

Gulve E A1,Dice J F1

Affiliation:

1. Department of Physiology and Biophysics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, U.S.A.

Abstract

We have examined the regulation of protein turnover in rat skeletal myotubes from the L8 cell line. We measured protein synthesis by the rates of incorporation of radiolabelled tyrosine into protein in the presence of a flooding dose of non-radioactive tyrosine. We monitored degradation of proteins labelled with radioactive tyrosine by the release of acid-soluble radioactivity into medium containing excess nonradioactive tyrosine. Extracellular tyrosine pools and intracellular tyrosyl-tRNA equilibrate rapidly during measurements of protein synthesis, and very little reutilization of the radiolabelled tyrosine occurs during degradation measurements. Measured rates of protein synthesis and degradation are constant for several hours, and changes in myotube protein content can be accurately predicted by the measured rates of protein synthesis and degradation. Most of the myotube proteins labelled with radioactive tyrosine for 2 days are degraded, with half-lives (t1/2) of approx. 50 h. A small proportion (less than 2.5%) of the radiolabelled proteins are degraded more rapidly (t1/2 less than 10 h), and, at most, a small proportion (less than 15%) are degraded more slowly (t1/2 greater than 50 h). A variety of agents commonly added to primary muscle cell cultures or to myoblast cell lines (18% Medium 199, 1% chick-embryo extract, antibiotics and antifungal agents) had no effect on rates of protein synthesis or degradation. Horse serum, fetal bovine serum and insulin stimulate protein synthesis and inhibit the degradation of long-lived proteins without affecting the degradation of short-lived proteins. Insulin-like growth factors (IGF)-1 and -2 also stimulate protein synthesis and inhibit protein degradation. The stimulation of protein synthesis and the inhibition of protein degradation are of similar magnitude (a maximum of approx. 2-fold) and display similar sensitivities to a particular anabolic agent. Insulin stimulates protein synthesis and inhibits protein degradation only at supraphysiological doses, whereas IGF-1 and -2 are effective at physiological concentrations. These and other findings suggest that IGFs may be important regulators of skeletal muscle growth during the fetal and early neonatal periods.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3