Bone remodeling induced by mechanical forces is regulated by miRNAs

Author:

Wang Yue1,Jia Lingfei23,Zheng Yunfei1,Li Weiran1

Affiliation:

1. Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China

2. Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China

3. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China

Abstract

The relationship between mechanical force and alveolar bone remodeling is an important issue in orthodontics because tooth movement is dependent on the response of bone tissue to the mechanical force induced by the appliances used. Mechanical cyclical stretch (MCS), fluid shear stress (FSS), compression, and microgravity play different roles in the cell differentiation and proliferation involved in bone remodeling. However, the underlying mechanisms are unclear, particularly the molecular pathways regulated by non-coding RNAs (ncRNAs) that play essential roles in bone remodeling. Amongst the various ncRNAs, miRNAs act as post-transcriptional regulators that inhibit the expression of their target genes. miRNAs are considered key regulators of many biologic processes including bone remodeling. Here, we review the role of miRNAs in mechanical force-induced bone metabolism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3