Detection of a 60 kDa tyrosine-phosphorylated protein in insulin-stimulated hepatoma cells that associates with the SH2 domain of phosphatidylinositol 3-kinase

Author:

Milarski K L1,Lazar D F1,Wiese R J1,Saltiel A R1

Affiliation:

1. Department of Signal Transduction, Parke-Davis Pharmaceutical Research, Division of Warner Lambert Company, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.

Abstract

Activation of the tyrosine kinase activity of the insulin receptor by autophosphorylation leads to phosphorylation of cellular substrates on tyrosine. Thus far, the best characterized is the insulin receptor substrate (IRS) 1, which has been proposed to serve as a docking protein for other molecules involved in signal transduction. A number of other proteins that become phosphorylated in response to insulin have been identified, some of which are reported to be tissue-specific. A 60 kDa phosphoprotein has been detected in adipocytes after insulin stimulation [Lavan and Lienhard (1993) J. Biol. Chem. 268, 5921-5928]. We have identified a protein of similar molecular mass in rat hepatoma cells transfected with the human insulin receptor. The 60 kDa protein in hepatoma cells is tyrosine-phosphorylated in response to insulin in a dose-dependent manner, with maximal phosphorylation occurring at 50 nM insulin. Although the dose-response of p60 phosphorylation mirrors that of IRS-1, the time course is slightly slower, with maximal phosphorylation observed 5 min after addition of insulin. Like the adipocyte protein, the 60 kDa protein detected in liver cells binds to the SH2 domain of the p85 regulatory subunit of phosphatidylinositol 3-kinase, but not to other SH2 domains. Binding of p60 to p85 is similar to the interaction between p85 and IRS-1 in that a tyrosine-phosphorylated peptide containing the YVXM motif can inhibit the association. The presence of this 60 kDa tyrosine-phosphorylated protein in adipocytes and hepatoma cells suggests that it represents another important intermediate in the insulin-receptor signal-transduction pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3