Selective inhibition of mitochondrial 27-hydroxylation of bile acid intermediates and 25-hydroxylation of vitamin D3 by cyclosporin A

Author:

Dahlbäck-Sjöberg H1,Björkhem I2,Princen H M3

Affiliation:

1. Department of Pharmaceutical Biochemistry, University of Uppsala, S-75123 Uppsala, Sweden

2. Department of Clinical Chemistry, Karolinska Institute, Huddinge Hospital, S-14186 Huddinge, Sweden

3. Gaubius Laboratory, Institute for Ageing and Vascular Research TNO, P.O. Box 430, 2300 AK Leiden, The Netherlands

Abstract

It was demonstrated recently that cyclosporin A blocks bile acid synthesis in cultured rat and human hepatocytes by specific inhibition of chenodeoxycholic acid formation. The site of inhibition was found to be the 27-hydroxylation of cholesterol catalysed by the liver mitochondrial 27-hydroxylase [Princen, Meijer, Wolthers, Vonk and Kuipers (1991) Biochem J. 275, 501-505]. In this paper the mechanism by which cyclosporin A blocks mitochondrial 27-hydroxylation was further investigated. It is shown that cyclosporin A inhibited 27-hydroxylation of bile acid intermediates, depending on their polarity. In isolated rat liver mitochondria, 27-hydroxylation of cholesterol was dose-dependently blocked by the drug, giving half-maximal inhibition at 4 microM, whereas 27-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol was not affected. A similar observation was made using electrophoretically homogeneous cytochrome P-450(27) isolated from rabbit liver mitochondria, excluding the possibility that cyclosporin A interfered with transport of substrates into the mitochondrion. Kinetic studies showed that inhibition of the 27-hydroxylation of cholesterol by cyclosporin A was of a non-competitive type. The drug also inhibited the 25-hydroxylase activity towards vitamin D3, catalysed by the same enzyme preparation, to the same extent as 27-hydroxylation of cholesterol. These results suggest that cyclosporin A may interfere with binding of cholesterol, but not of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, to the active site of the enzyme. These data provide an explanation for the selective inhibition of chenodeoxycholic acid synthesis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3