Activation of dihydrofolate reductase following thiol modification involves a conformational change at the active site

Author:

FAN Ying-Xin1,LI Zhen-Yu1,ZHU Li1,ZHOU Jun-Mei1

Affiliation:

1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China

Abstract

Compared with the activation of dihydrofolate reductase (DHFR) by protein denaturants and inorganic salts, activation of the enzyme by thiol modification is relatively slow. Thus it is an ideal system for kinetic study of the activation mechanism. We describe here a kinetic study of the activation of DHFRs from chicken liver and Chinese hamster ovary by p-hydroxymercuribenzoate (p-HMB). The conformational changes in the enzyme molecule that result from the modification were monitored by measuring fluorescence enhancement due to the binding of 2-p-toluidinylnaphthalene-6-sulphonate (TNS), and by monitoring changes in the intrinsic fluorescence of the enzyme. Both activation and the conformational change probed by TNS followed pseudo-first-order kinetics, and the rate constants obtained are in good agreement with each other. The change in intrinsic fluorescence is a biphasic process. The rate of the fast phase, which may reflect a change in the microenvironment of Trp-24 at the active site, coincides with the rate of activation and the conformational change probed by TNS. The rate of the slow phase, which reflects a global conformational change, is about one order of magnitude lower than that of activation. The results indicate that the activation of DHFR by p-HMB is due to modification-induced conformational changes at its active site, rather than the modification of the thiol group itself, which is almost complete within the dead-time of the experiment. This study provides kinetic evidence for the proposal that flexibility at the active site is essential for full expression of catalytic activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3