Affiliation:
1. School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K.
Abstract
Studies of shape asymmetry have become increasingly abundant as the methods of geometric morphometrics have gained widespread use. Most of these studies have focussed on fluctuating asymmetry and have largely obtained similar results as more traditional analyses of asymmetry in distance measurements, but several notable differences have also emerged. A key difference is that shape analyses provide information on the patterns, not just the amount of variation, and therefore tend to be more sensitive. Such analyses have shown that apparently symmetric structures in animals consistently show directional asymmetry for shape, but not for size. Furthermore, the long-standing prediction that phenotypic plasticity in response to environmental heterogeneity can contribute to fluctuating asymmetry has been confirmed for the first time for the shape of flower parts (but not for size). Finally, shape analyses in structures with complex symmetry, such as many flowers, can distinguish multiple types of directional asymmetry, generated by distinct direction-giving factors, which combine to the single component observable in bilaterally symmetric structures. While analyses of shape asymmetry are broadly compatible with traditional analyses of asymmetry, they incorporate more detailed morphological information, particularly for structures with complex symmetry, and therefore can reveal subtle biological effects that would otherwise not be apparent. This makes them a promising tool for a wide range of studies in the basic and applied life sciences.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献