Phosphatidylinositol 3-kinase acts at an intracellular membrane site to enhance GLUT4 exocytosis in 3T3-L1 cells

Author:

YANG Jing1,CLARKE James F.1,ESTER Catriona J.1,YOUNG Paul W.2,KASUGA Masato3,HOLMAN Geoffrey D.1

Affiliation:

1. Department of Biochemistry, University of Bath, Bath BA2 7AY, U.K.

2. SmithKline Beecham Pharmaceuticals, The Fryth, Welwyn, AL6 9AR, U.K.

3. The Second Department of Internal Medicine, Kobe University School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe 650, Japan

Abstract

Glucose transporters (GLUTs) are continuously recycled in 3T3-L1 cells and so insulin, through its action on phosphatidylinositol 3-kinase (PI 3-kinase), could potentially alter the distribution of these transporters by enhancing retention in the plasma membrane or acting intracellularly to increase exocytosis, either by stimulating a budding or a docking and fusion process. To examine the site of involvement of PI 3-kinase in the glucose transporter recycling pathway, we have determined the kinetics of recycling under conditions in which the PI 3-kinase activity is inhibited by wortmannin. Wortmannin addition to fully insulin-stimulated cells induces a net reduction of glucose transport activity with a time course that is consistent with a major effect on the return of internalized transporters to the plasma membrane. The exocytosis of GLUT1 and GLUT4 is reduced to very low levels in wortmannin-treated cells (≈ 0.009 min-1), but the endocytosis of these isoforms is not markedly perturbed and the rate constants are approx. 10-fold higher than for exocytosis (0.099 and 0.165 min-1, respectively). The slow reduction in basal activity following treatment with wortmannin is consistent with a wortmannin effect on constitutive recycling as well as insulin-regulated exocytosis. PI 3-kinase activity that is precipitated by anti-phosphotyrosine, anti-[insulin receptor substrate 1 (IRS1)] and anti-α-p85 antibodies show the same level of insulin-stimulated activity, ≈ 0.5 pmol/20 min per dish of 3T3-L1 cells. Since the activities precipitated by all three antibodies are similar, it seems unlikely that a second insulin receptor substrate, IRS2, contributes significantly to the insulin signalling observed in 3T3-L1 cells. To examine whether insulin targets PI 3-kinase to intracellular membranes we have carried out subcellular fractionation studies. These suggest that nearly all the insulin-stimulated PI 3-kinase activity is located on intracellular, low-density, membranes. In addition, the association of PI 3-kinase with IRS1 appears to partially deplete the cytoplasm of α-p85-precipitatable activity, suggesting that IRS1 may redistribute PI 3-kinase from the cytoplasm to the low-density microsome membranes. Taken together, the trafficking kinetic and PI 3-kinase distribution studies suggest an intracellular membrane site of action of the enzyme in enhancing glucose transporter exocytosis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3