Real-time analysis of amyloid fibril formation of α-synuclein using a fibrillation-state-specific fluorescent probe of JC-1

Author:

Lee Jung-Ho1,Lee In-Hwan1,Choe Young-Jun1,Kang Sungsoo1,Kim Hui Young1,Gai Wei-Ping2,Hahn Ji-Sook1,Paik Seung R.1

Affiliation:

1. School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-Ku, Seoul 151-744, South Korea

2. Department of Physiology and Center for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia

Abstract

α-Synuclein is a pathological component of PD (Parkinson's disease) by participating in Lewy body formation. JC-1 (5,5′,6,6′-tetrachloro-1,1,3,3′-tetraethylbenzimidazolyl carbocyanine iodide) has been shown to interact with α-synuclein at the acidic C-terminal region with a Kd of 2.6 μM. JC-1 can discriminated between the fibrillation states of α-synuclein (monomeric, oligomeric intermediate and fibrillar forms) by emitting the enhanced binding fluorescence of different colours at 590, 560 and 538 nm respectively with the common excitation at 490 nm. The fibrillation-state-specific interaction of JC-1 allowed us to perform real-time analyses of the α-synuclein fibrillation in the presence of iron as a fibrillation inducer, rifampicin as a fibrillation inhibitor, baicalein as a defibrillation agent and dequalinium as a protofibril inducer. In addition, various α-synuclein fibrils with different morphologies prepared with specific ligands such as metal ions, glutathione, eosin and lipids were monitored with their characteristic JC-1-binding fluorescence spectra. FRET (fluorescence resonance energy transfer) between thioflavin-T and JC-1 was also employed to specifically identify the amyloid fibrils of α-synuclein. Taken together, we have introduced JC-1 as a powerful and versatile probe to explore the molecular mechanism of the fibrillation process of α-synuclein in vitro. It could be also useful in high-throughput drug screening. The specific α-synuclein interaction of JC-1 would therefore contribute to our complete understanding of the molecular aetiology of PD and eventual development of diagnostic/therapeutic strategies for various α-synucleinopathies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3