Affiliation:
1. Department of Biological Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India
2. Haematology Unit, N.R.S. Medical College and Hospital, Calcutta 700 014, India
3. Department of Biochemistry, University College of Science, University of Calcutta, Calcutta 700 019, India
Abstract
The effect of methylglyoxal on the oxygen consumption of mitochondria of both normal and leukaemic leucocytes was tested by using different respiratory substrates and complex specific artificial electron donors and inhibitors. The results indicate that methylglyoxal strongly inhibits mitochondrial respiration in leukaemic leucocytes, whereas, at a much higher concentration, methylglyoxal fails to inhibit mitochondrial respiration in normal leucocytes. Methylglyoxal strongly inhibits ADP-stimulated α-oxoglutarate and malate plus NAD+-dependent respiration, whereas, at a higher concentration, methylglyoxal fails to inhibit succinate and α-glycerophosphate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinone and cannot inhibit oxygen consumption when the N,N,N´,N´-tetramethyl-p-phenylenediamine by-pass is used. NADH oxidation by sub-mitochondrial particles of leukaemic leucocytes is also inhibited by methylglyoxal. Lactaldehyde, a catabolite of methylglyoxal, can exert a protective effect on the inhibition of leukaemic leucocyte mitochondrial respiration by methylglyoxal. Methylglyoxal also inhibits l-lactic acid formation by intact leukaemic leucocytes and critically reduces the ATP level of these cells, whereas methylglyoxal has no effect on normal leucocytes. We conclude that methylglyoxal inhibits glycolysis and the electron flow through mitochondrial complex I of leukaemic leucocytes. This is strikingly similar to our previous studies on mitochondrial respiration, glycolysis and ATP levels in Ehrlich ascites carcinoma cells [Ray, Dutta, Halder and Ray (1994) Biochem. J. 303, 69–72; Halder, Ray and Ray (1993) Int. J. Cancer 54, 443–449], which strongly suggests that the inhibition of electron flow through complex I of the mitochondrial respiratory chain and inhibition of glycolysis by methylglyoxal may be common characteristics of all malignant cells.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献