Discerning the mechanism of action of HtrA4: a serine protease implicated in the cell death pathway

Author:

Kummari Raghupathi12,Dutta Shubhankar1,Chaganti Lalith K.1,Bose Kakoli12ORCID

Affiliation:

1. Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India

2. Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

Abstract

Abstract High-temperature requirement protease A4 (HtrA4) is a secretary serine protease whose expression is up-regulated in pre-eclampsia (PE) and hence is a possible biomarker of PE. It has also been altered in cancers such as glioblastoma, breast carcinoma, and prostate cancer making it an emerging therapeutic target. Among the human HtrAs, HtrA4 is the least characterized protease pertaining to both structure and its functions. Although the members of human HtrA family share a significant structural and functional conservation, subtle structural changes have been associated with certain distinct functional requirements. Therefore, intricate dissection of HtrA4 structural and functional properties becomes imperative to understand its role in various biological and pathophysiological processes. Here, using inter-disciplinary approaches including in silico, biochemical and biophysical studies, we have done a domain-wise dissection of HtrA4 to delineate the roles of the domains in regulating oligomerization, stability, protease activity, and specificity. Our findings distinctly demonstrate the importance of the N-terminal region in oligomerization, stability and hence the formation of a functional enzyme. In silico structural comparison of HtrA4 with other human HtrAs, enzymology studies and cleavage assays with X-linked inhibitor of apoptosis protein (XIAP) show overall structural conservation and allosteric mode of protease activation, which suggest functional redundancy within this protease family. However, significantly lower protease activity as compared with HtrA2 indicates an additional mode of regulation of the protease activity in the cellular milieu. Overall, these studies provide first-hand information on HtrA4 and its interaction with antiapoptotic XIAP thus implicating its involvement in the apoptotic pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular Functions of High-Temperature Requirement Factor A4 in Placenta;Cells;2023-05-24

2. Gel Filtration Chromatography;Textbook on Cloning, Expression and Purification of Recombinant Proteins;2022

3. Protein Purification by Affinity Chromatography;Textbook on Cloning, Expression and Purification of Recombinant Proteins;2022

4. Interplay between HTRA1 and classical signalling pathways in organogenesis and diseases;Saudi Journal of Biological Sciences;2021-12

5. Overview of Human HtrA Family Proteases and Their Distinctive Physiological Roles and Unique Involvement in Diseases, Especially Cancer and Pregnancy Complications;International Journal of Molecular Sciences;2021-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3