Affiliation:
1. Department of Biochemistry, School of Biological Sciences, Medical and Biological Sciences Building, University of Southampton, Bassett Crescent East, Southampton S016 7PX, U.K.
Abstract
Experiments are described in which the individual properties of the two 5-aminolaevulinic acid (ALA) binding sites, the A-site and the P-site, of 5-aminolaevulinic acid dehydratase (ALAD) have been investigated. The ALA binding affinity at the A-site is greatly enhanced (at least 10-fold) on the binding of the catalytic metal ion (bound at the alpha-site). The nature of the catalytic metal ion, Mg2+ or Zn2+, also gave major variations in the substrate Km, P-site affinity for ALA, the effect of potassium and phosphate ions and the pH-dependence of substrate binding. Modification of the P-site by reaction of the enzyme-substrate Schiff base with NaBH4 and analysis of the reduced adduct by electro-spray mass spectrometry indicated a maximum of 1 mol of substrate incorporated/mol of subunit, correlating with a linear loss of enzyme activity. The reduced Schiff-base adduct was used to investigate substrate binding at the A-site by using rate-of-dialysis analysis. The affinity for ALA at the A-site of Mg alpha Zn beta ALAD was found to determine the Km for the reaction and was pH-dependent, with its affinity increasing from 1 mM at pH 6 to 70 microM at pH 8.5. The affinity of ALA at the P-site of Zn alpha An beta ALAD is proposed to limit the Km at pH values above 7, since the measured Kd for ALA at the A-site in 45 microM Tris, pH 8, was well below the observed Km (600 microM) under the same conditions. The amino group of the ALA molecule bound at the P-site was identified as a critical binding component for the A-site, explaining why ALA binding to ALAD is ordered, with the P-site ALA binding first. Structural requirements for ALA binding at the A- and P-sites have been identified: the P-site requires the carbonyl and carboxylate groups, whereas the A-site requires the amino, carbonyl and carboxylate groups of the substrate.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献