Regulation of the biosynthesis of insulin-secretory-granule proteins. Co-ordinate translational control is exerted on some, but not all, granule matrix constituents

Author:

Guest P C1,Rhodes C J1,Hutton J C1

Affiliation:

1. Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, U.K.

Abstract

The regulation of the biosynthesis of the insulin-secretory-granule matrix proteins insulin II, chromogranin A and carboxypeptidase H was studied in isolated rat islets of Langerhans. Islets were labelled with [35S]-methionine, and incorporation into total protein was determined by trichloroacetic acid precipitation and that into specific proteins by immunoprecipitation followed by polyacrylamide-gel electrophoresis and fluorography. Islets incubated in the presence of 16.7 mM-glucose incorporated 3 times as much [35S]-methionine into total protein as did islets incubated with 2.8 mM-glucose. The same conditions produced more than a 20-fold increase in incorporation into both proinsulin and chromogranin A, with no observable effect on carboxypeptidase H. The concentration-dependencies of the glucose-stimulated synthesis of chromogranin A and proinsulin were parallel, and in both cases the response to 16.7 mM-glucose was typified by an initial lag of 20 min, followed by a rapid activation to a new steady state over the ensuing 40 min. Synthesis of total protein, although activated to a lesser extent, responded with similar kinetics. Extracellular Ca2+ depletion did not affect the basal or glucose-stimulated biosynthesis of any of the proteins under investigation. Mannoheptulose (20 mM) abolished glucose-stimulated synthesis of insulin, chromogranin A and total protein, but had no effect on the synthesis of carboxypeptidase H. It is concluded that the biosynthesis of insulin and chromogranin A is regulated principally at the translational level by the same intracellular signal generated from the metabolism of glucose. Such regulation is not common to all insulin-secretory-granule proteins, since the synthesis of carboxypeptidase H was unaffected by the same stimulus.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3