Lipid phosphate phosphohydrolase type 1 (LPP1) degrades extracellular lysophosphatidic acid in vivo

Author:

Tomsig Jose L.1,Snyder Ashley H.1,Berdyshev Evgeny V.2,Skobeleva Anastasia2,Mataya Chifundo3,Natarajan Viswanathan2,Brindley David N.3,Lynch Kevin R.1

Affiliation:

1. Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, U.S.A.

2. Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, U.S.A.

3. Department of Biochemistry, University of Alberta, Edmonton, Canada, T6G 2S2

Abstract

LPA (lysophosphatidic acid) is a lipid mediator that stimulates cell proliferation and growth, and is involved in physiological and pathological processes such as wound healing, platelet activation, angiogenesis and the growth of tumours. Therefore defining the mechanisms of LPA production and degradation are of interest in understanding the regulation of these processes. Extracellular LPA synthesis is relatively well understood, whereas the mechanisms of its degradation are not. One route of LPA degradation is dephosphorylation. A candidate enzyme is the integral membrane exophosphatase LPP1 (lipid phosphate phosphohydrolase type 1). In the present paper, we report the development of a mouse wherein the LPP1 gene (Ppap2a) was disrupted. The homozygous mice, which are phenotypically unremarkable, generally lack Ppap2a mRNA, and multiple tissues exhibit a substantial (35–95%) reduction in LPA phosphatase activity. Compared with wild-type littermates, Ppap2atr/tr animals have increased levels of plasma LPA, and LPA injected intravenously is metabolized at a 4-fold lower rate. Our results demonstrate that LPA is rapidly metabolized in the bloodstream and that LPP1 is an important determinant of this turnover. These results indicate that LPP1 is a catabolic enzyme for LPA in vivo.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3