Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction

Author:

PONTING Chris P.1

Affiliation:

1. MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, U.K.

Abstract

Sequence database searches, using iterative-profile and Hidden-Markov-model approaches, were used to detect hitherto-undetected homologues of proteins that regulate the endoplasmic reticulum (ER)-associated degradation pathway. The translocon-associated subunit Sec63p (Sec = secretory) was shown to contain a domain of unknown function found twice in several Brr2p-like RNA helicases (Brr2 = bad response to refrigeration 2). Additionally, Cue1p (Cue=coupling of ubiquitin conjugation to ER degradation), a yeast protein that recruits the ubiquitin-conjugating (UBC) enzyme Ubc7p to an ER-associated complex, was found to be one of a large family of putative scaffolding-domain-containing proteins that include the autocrine motility factor receptor and fungal Vps9p (Vps=vacuolar protein sorting). Two other yeast translocon-associated molecules, Sec72p and Hrd3p (Hrd = 3-hydroxy-3-methylglutaryl-CoA reductase degradation), were shown to contain multiple tetratricopeptide-repeat-like sequences. From this observation it is suggested that Sec72p associates with a heat-shock protein, Hsp70, in a manner analogous to that known for Hop (Hsp70/Hsp90 organizing protein). Finally, the luminal portion of Ire1p (Ire=high inositol-requiring), thought to convey the sensing function of this transmembrane kinase and endoribonuclease, was shown to contain repeats similar to those in β-propeller proteins. This finding hints at the mechanism by which Ire1p may sense extended unfolded proteins at the expense of compact folded molecules.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3