Cyclic AMP enhances agonist-induced Ca2+ entry into endothelial cells by activation of potassium channels and membrane hyperpolarization

Author:

Graier W F1,Kukovetz W R1,Groschner K1

Affiliation:

1. Institut für Pharmakologie und Toxikologie, Universität Graz, Universität 2, A-8010 Graz, Austria.

Abstract

The mechanism underlying cyclic AMP (cAMP)-mediated amplification of agonist-induced Ca2+ responses in endothelial cells was investigated in pig endothelial cells. Forskolin, adenosine and isoprenaline, as well as the membrane-permeant cAMP analogue dibutyryl cAMP, enhanced bradykinin-induced rises in intracellular free Ca2+ as well as bradykinin-induced Mn2+ entry. These agents were also found to hyperpolarize endothelial cells without increasing intracellular Ca2+ by itself, i.e. in the absence of bradykinin. Both amplification of bradykinin effects and the hyperpolarizing action was blocked by the protein kinase inhibitor H-8. The involvement of K+ channels in the hyperpolarizing effects of forskolin was consequently studied in perforated outside-out vesicles. Two different types of K+ channels were recorded, one of which had a large conductance (170 pS) and was activated by forskolin. We suggest that stimulation of endothelial adenylate cyclase results in activation of large-conductance K+ channels and consequently in membrane hyperpolarization, which in turn enhances bradykinin-induced entry of Ca2+ by increasing its electrochemical gradient.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3