Studies on sex-organ development. Changes in chemical composition and oestradiol-binding capacity in chromatin during the differentiation of chick Müllerian ducts

Author:

Teng Ching Sung1,Teng Christina T.1

Affiliation:

1. Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A.

Abstract

Biochemical and immunochemical techniques were used to probe the changes in composition of the chromatin of differentiating Müllerian ducts. The non-histone protein increases gradually in the left duct and reaches a constant amount at day 15 of incubation, then remains at the same value until after birth. In the regressing right duct, the non-histone protein increases and then decreases. Gel electrophoresis indicated an increased heterogeneity in the composition of the non-histone protein corresponding to Müllerian-duct differentiation. Little variation in quantity and quality of the histone was observed; however, immunochemical assay confirmed the structural change of Müllerian-duct chromatin during development. An antibody against the chromatin of the newborn-chick oviduct was produced in the rabbit. The chromatin of Müllerian ducts from the early embryonic stage showed a small affinity with the antibody; the affinity increased during the late embryonic stages. The affinity was greatly decreased in the regressing right duct. Oestrogen-binding sites were present in the chromatin of the left and right Müllerian ducts during differentiation, with more sites in the left duct than in the right one during the late stages of development. After oestrogen treatment in vivo, the oestrogen-binding sites on the chromatin of both the left and the right ducts were increased, with a greater increase in the left duct than in the right. In the developing left duct the binding sites reach a maximum on day 15 of incubation, and remain constant at that value until birth.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3