Catecholaminergic polymorphic ventricular tachycardia-related mutations R33Q and L167H alter calcium sensitivity of human cardiac calsequestrin

Author:

Valle Giorgia1,Galla Daniela2,Nori Alessandra1,Priori Silvia G.3,Gyorke Sandor4,de Filippis Vincenzo2,Volpe Pompeo1

Affiliation:

1. Department of Experimental Biomedical Sciences, University of Padova, IIM Interuniversity Institute of Myology, CNR Institute of Neurosciences, viale G. Colombo 3, 35121, Padova, Italy

2. Department of Pharmaceutical Sciences, University of Padova, via F. Marzolo 5, 35121 Padova, Italy

3. Department of Cardiology, Molecular Cardiology section and IRCCS Fondazione Maugeri, University of Pavia, 27100 Pavia, Italy

4. Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, U.S.A.

Abstract

Two missense mutations, R33Q and L167H, of hCASQ2 (human cardiac calsequestrin), a protein segregated to the lumen of the sarcoplasmic reticulum, are linked to the autosomal recessive form of CPVT (catecholaminergic polymorphic ventricular tachycardia). The effects of these mutations on the conformational, stability and Ca2+ sensitivity properties of hCASQ2, were investigated. Recombinant WT (wild-type) and mutant CASQ2s were purified to homogeneity and characterized by spectroscopic (CD and fluorescence) and biochemical (size-exclusion chromatography and limited proteolysis) methods at 500 and 100 mM KCl, with or without Ca2+ at a physiological intraluminal concentration of 1 mM; Ca2+-induced polymerization properties were studied by turbidimetry. In the absence of Ca2+, mutations did not alter the conformation of monomeric CASQ2. For L167H only, at 100 mM KCl, emission fluorescence changes suggested tertiary structure alterations. Limited proteolysis showed that amino acid substitutions enhanced the conformational flexibility of CASQ2 mutants, which became more susceptible to tryptic cleavage, in the order L167H>R33Q>WT. Ca2+ at a concentration of 1 mM amplified such differences: Ca2+ stabilized WT CASQ2 against urea denaturation and tryptic cleavage, whereas this effect was reduced in R33Q and absent in L167H. Increasing [Ca2+] induced polymerization and precipitation of R33Q, but not that of L167H, which was insensitive to Ca2+. Based on CASQ2 models, we propose that the Arg33→Gln exchange made the Ca2+-dependent formation of front-to-front dimers more difficult, whereas the Leu167→His replacement almost completely inhibited back-to-back dimer interactions. Initial molecular events of CPVT pathogenesis begin to unveil and appear to be different depending upon the specific CASQ2 mutation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3