CD45 and RPTPα display different protein tyrosine phosphatase activities in T lymphocytes

Author:

NG H. W. David1,JABALI D. Mojgan1,MAITI Arpita1,BORODCHAK Peter1,HARDER W. Kenneth2,BROCKER Thomas3,MALISSEN Bernard3,JIRIK R. Frank2,JOHNSON Pauline1

Affiliation:

1. Department of Microbiology and Immunology, 300-6174 University Boulevard, University of British Columbia, Vancouver, B.C., Canada V6T 1Z3

2. Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, B.C., Canada V6T 1Z3

3. Centre d'immunologie, INSERM-CNRS de Marseille-Luminy, F-15288 Marseille 9, France

Abstract

To examine the substrate specificity and function of two receptor protein tyrosine phosphatases, CD45 and RPTPα, RPTPα was expressed in a CD45-, T-cell receptor (TCR)+, BW5147 T-lymphoma cell. High levels of expression of RPTPα did not fully restore either proximal or distal TCR-mediated signalling events. RPTPα was unable to reconstitute the phosphorylation of CD3ζ and did not increase the expression of the activation marker, CD69, on stimulation with TCR/CD3. RPTPα did not significantly alter the phosphorylation state or kinase activity of two CD45 substrates, p56lck or p59fyn, suggesting that RPTPα does not have the same specificity or function as CD45 in T-cells. Further comparison of the two phosphatases indicated that immunoprecipitated RPTPα was approx. one-seventh to one-tenth as active as CD45 when tested against artificial substrates. This difference in activity was also observed in vitro with purified recombinant enzymes at physiological pH. Additional analysis with Src family phosphopeptides and recombinant p56lck as substrates indicated that CD45 was consistently more active than RPTPα, having both higher Vmax and lower Km values. Thus CD45 is intrinsically a much more active phosphatase than RPTPα, which provides one reason why RPTPα cannot effectively dephosphorylate p56lck and substitute for CD45 in T-cells. This work establishes that these two related protein tyrosine phosphatases are not interchangeable in T-cells and that this is due, at least in part, to quantitative differences in phosphatase activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3