Structural double-mutant cycle analysis of a hydrogen bond network in ketosteroid isomerase from Pseudomonas putida biotype B

Author:

JANG Do Soo1,CHA Hyung Jin1,CHA Sun-Shin2,HONG Bee Hak1,HA Nam-Chul3,LEE Ja Young1,OH Byung-Ha3,LEE Heung-Soo2,CHOI Kwan Yong1

Affiliation:

1. National Research Laboratory of Protein Folding and Engineering, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, South Korea

2. Beamline Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 790-784, South Korea

3. National CRI Center for Biomolecular Recognition, Pohang University of Science and Technology, Pohang, 790-784, South Korea

Abstract

KSI (ketosteroid isomerase) catalyses an allylic isomerization reaction at a diffusion-controlled rate. A hydrogen bond network, Asp99···Water504···Tyr14···Tyr55···Tyr30, connects two critical catalytic residues, Tyr14 and Asp99, with Tyr30, Tyr55 and a water molecule in the highly apolar active site of the Pseudomonas putida KSI. In order to characterize the interactions among these amino acids in the hydrogen bond network of KSI, double-mutant cycle analysis was performed, and the crystal structure of each mutant protein within the cycle was determined respectively to interpret the coupling energy. The ΔΔGo values of Y14F/D99L (Tyr14→Phe/Asp99→Leu) KSI, 25.5 kJ/mol for catalysis and 28.9 kJ/mol for stability, were smaller than the sums (i.e. 29.7 kJ/mol for catalysis and 34.3 kJ/mol for stability) for single mutant KSIs respectively, indicating that the effect of the Y14F/D99L mutation was partially additive for both catalysis and stability. The partially additive effect of the Y14F/D99L mutation suggests that Tyr14 and Asp99 should interact positively for the stabilization of the transition state during the catalysis. The crystal structure of Y14F/D99L KSI indicated that the Y14F/D99L mutation increased the hydrophobic interaction while disrupting the hydrogen bond network. The ΔΔGo values of both Y30F/D99L and Y55F/D99L KSIs for the catalysis and stability were larger than the sum of single mutants, suggesting that either Tyr30 and Asp99 or Tyr55 and Asp99 should interact negatively for the catalysis and stability. These synergistic effects of both Y30F/D99L and Y55F/D99L mutations resulted from the disruption of the hydrogen bond network. The synergistic effect of the Y55F/D99L mutation was larger than that of the Y30F/D99L mutation, since the former mutation impaired the proper positioning of a critical catalytic residue, Tyr14, involved in the catalysis of KSI. The present study can provide insight into interpreting the coupling energy measured by double-mutant cycle analysis based on the crystal structures of the wild-type and mutant proteins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3