The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding

Author:

Chou Wei-I1,Pai Tun-Wen2,Liu Shi-Hwei1,Hsiung Bor-Kai1,Chang Margaret D.-T.1

Affiliation:

1. Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan 30013, Republic of China

2. Department of Computer Science, National Taiwan Ocean University, No. 2, Pei Ning Rd, Keelung, Taiwan 20224, Republic of China

Abstract

The starch-hydrolysing enzyme GA (glucoamylase) from Rhizopus oryzae is a commonly used glycoside hydrolase in industry. It consists of a C-terminal catalytic domain and an N-terminal starch-binding domain, which belong to the CBM21 (carbohydrate-binding module, family 21). In the present study, a molecular model of CBM21 from R. oryzae GA (RoGACBM21) was constructed according to PSSC (progressive secondary structure correlation), modified structure-based sequence alignment, and site-directed mutagenesis was used to identify and characterize potential ligand-binding sites. Our model suggests that RoGACBM21 contains two ligand-binding sites, with Tyr32 and Tyr67 grouped into site I, and Trp47, Tyr83 and Tyr93 grouped into site II. The involvement of these aromatic residues has been validated using chemical modification, UV difference spectroscopy studies, and both qualitative and quantitative binding assays on a series of RoGACBM21 mutants. Our results further reveal that binding sites I and II play distinct roles in ligand binding, the former not only is involved in binding insoluble starch, but also facilitates the binding of RoGACBM21 to long-chain soluble polysaccharides, whereas the latter serves as the major binding site mediating the binding of both soluble polysaccharide and insoluble ligands. In the present study we have for the first time demonstrated that the key ligand-binding residues of RoGACBM21 can be identified and characterized by a combination of novel bioinformatics methodologies in the absence of resolved three-dimensional structural information.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference52 articles.

1. Glucoamylase structural, functional, and evolutionary relationships;Coutinho;Proteins,1997

2. Glucoamylase: structure/function relationships, and protein engineering;Sauer;Biochim. Biophys. Acta,2000

3. Molecular mechanism in α-glucosidase and glucoamylase;Chiba;Biosci. Biotechnol. Biochem.,1997

4. A classification of glycosyl hydrolases based on amino acid sequence similarities;Henrissat;Biochem. J.,1991

5. Rhizopus raw-starch-degrading glucoamylase: its cloning and expression in yeast;Ashikari;Agric. Biol. Chem.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3