Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type 2 diabetes

Author:

Song Fangfang12,Jia Wenbo12,Yao Ying3,Hu Yafei12,Lei Lin12,Lin Jie12,Sun Xiufa12,Liu Liegang12

Affiliation:

1. Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, People's Republic of China

2. MOE Key Lab of Environment and Health School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, People's Republic of China

3. Department of Internal Medicine, Tongji Hospital Affiliated with the Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, People's Republic of China

Abstract

Previous studies have postulated the association between oxidative stress and Type 2 diabetes. Considering the long pre-diabetic period with IGR (impaired glucose regulation) and its high risk of developing diabetes, to test this hypothesis, we have investigated oxidative stress pathways and DNA damage in patients with IGR and newly diagnosed Type 2 diabetes. The study population consisted of 92 subjects with NGT (normal glucose tolerance), 78 patients with IGR and 113 patients with newly diagnosed diabetes. Plasma MDA (malondialdehyde) and TAC (total antioxidative capacity) status, erythrocyte GSH content and SOD (superoxide dismutase) activity were determined. A comet assay was employed to evaluate DNA damage. Compared with subjects with NGT, patients with IGR had reduced erythrocyte SOD activity. Patients with diabetes had a higher plasma MDA concentration, but a lower plasma TAC level and erythrocyte SOD activity, than the NGT group. Correlation analysis revealed a strong positive association between IR (insulin resistance) and MDA concentration, but negative correlations with TAC status and SOD activity. With respect to β-cell function, a positive association with TAC status and an inverse correlation with GSH respectively, were observed. The comet assay revealed slight DNA damage in patients with IGR, which was increased in patients with diabetes. Significant correlations were observed between DNA damage and hyperglycaemia, IR and β-cell dysfunction. In conclusion, the results of the present study suggest that hyperglycaemia in an IGR state caused the predominance of oxidative stress over antioxidative defence systems, leading to oxidative DNA damage, which possibly contributed to pancreatic β-cell dysfunction, IR and more pronounced hyperglycaemia. This vicious circle finally induced the deterioration to diabetes.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3