Evidence for co-operativity in coenzyme binding to tetrameric Sulfolobus solfataricus alcohol dehydrogenase and its structural basis: fluorescence, kinetic and structural studies of the wild-type enzyme and non-co-operative N249Y mutant

Author:

GIORDANO Antonietta1,FEBBRAIO Ferdinando1,RUSSO Consiglia1,ROSSI Mosè1,RAIA Carlo A.1

Affiliation:

1. Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Marconi 10, I-80125 Napoli, Italy

Abstract

The interaction of coenzyme with thermostable homotetrameric NAD(H)-dependent alcohol dehydrogenase from the thermoacidophilic sulphur-dependent crenarchaeon Sulfolobus solfataricus (SsADH) and its N249Y (Asn-249→Tyr) mutant was studied using the high fluorescence sensitivity of its tryptophan residues Trp-95 and Trp-117 to the binding of coenzyme moieties. Fluorescence quenching studies performed at 25 °C show that SsADH exhibits linearity in the NAD(H) binding [the Hill coefficient (h)∼1) at pH 9.8 and at moderate ionic strength, in addition to positive co-operativity (h=2.0–2.4) at pH 7.8 and 6.8, and at pH 9.8 in the presence of salt. Furthermore, NADH binding is positively co-operative below 20 °C (h∼3) and negatively co-operative at 40–50 °C (h∼0.7), as determined at moderate ionic strength and pH 9.8. Steady-state kinetic measurements show that SsADH displays standard Michaelis–Menten kinetics between 35 and 45 °C, but exhibits positive and negative co-operativity for NADH oxidation below (h=3.3 at 20 °C) and above (h=0.7 at 70–80 °C) this range of temperatures respectively. However, N249Y SsADH displays non-co-operative behaviour in coenzyme binding under the same experimental conditions used for the wild-type enzyme. In loop 270–275 of the coenzyme domain and segments at the interface of dimer A–B, analyses of the wild-type and mutant SsADH structures identified the structural elements involved in the intersubunit communication and suggested a possible structural basis for co-operativity. This is the first report of co-operativity in a tetrameric ADH and of temperature-induced co-operativity in a thermophilic enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3