Affiliation:
1. Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, U.K.
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Reference128 articles.
1. Heat-induced deamination of cytosine residues in deoxyribonucleic acid;Lindahl;Biochemistry,1974
2. DNA repair in the archaea-an emerging picture;White;FEMS Microbiol. Rev.,2018
3. Enzymic synthesis of deoxyribonucleic acid;Bessman;Biochim. Biophys. Acta,1956
4. Archaeal DNA polymerases in biotechnology;Zhang;Appl. Microbiol. Biotechnol.,2015
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献