USP38 regulates inflammatory cardiac remodeling after myocardial infarction

Author:

Gong Yang123,Kong Bin123,Shuai Wei123,Chen Tao123,Zhang Jing Jing123,Huang He123ORCID

Affiliation:

1. 1Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China

2. 2Cardiovascular Research Institute of Wuhan University, Wuhan, China

3. 3Hubei Key Laboratory of Cardiology, Wuhan, China

Abstract

Abstract Background: The inflammatory response and subsequent ventricular remodeling are key factors contributing to ventricular arrhythmias (VAs) after myocardial infarction (MI). Ubiquitin-specific protease 38 (USP38) is a member of the USP family, but the impact of USP38 in arrhythmia substrate generation after MI remains unclear. This study aimed to determine the role of USP38 in post-MI VAs and its underlying mechanisms. Methods and results: Surgical left descending coronary artery ligation was used to construct MI models. Morphological, biochemical, histological, and electrophysiological studies and molecular analyses were performed after MI on days 3 and 28. We found that the USP38 expression was remarkably increased after MI. Cardiac-conditional USP38 knockout (USP38-CKO) reduces the expression of the inflammatory marker CD68 as well as the inflammatory factors TNF-α and IL-1β after MI, thereby alleviating advanced cardiac fibrosis, electrical remodeling, ion channel remodeling, and susceptibility to VAs. In contrast, cardiac-specific USP38 overexpression (USP38-TG) showed a significant opposite effect, exacerbating the early inflammatory response and cardiac remodeling after MI. Mechanistically, USP38 knockout inhibited activation of the TAK1/NF-κB signaling pathway after MI, whereas USP38 overexpression enhanced activation of the TAK1/NF-κB signaling pathway after MI. Conclusions: Our study confirms that USP38-CKO attenuates the inflammatory response, improves ventricular remodeling after myocardial infarction, and reduces susceptibility to malignant VA by inhibiting the activation of the TAK1/NF-κB pathway, with USP38-TG playing an opposing role. These results suggest that USP38 may be an important target for the treatment of cardiac remodeling and arrhythmias after MI.

Funder

MOST | National Natural Science Foundation of China

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3