Towards the molecular mechanism of respiratory complex I

Author:

Hirst Judy1

Affiliation:

1. Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, U.K.

Abstract

Complex I (NADH:quinone oxidoreductase) is crucial to respiration in many aerobic organisms. In mitochondria, it oxidizes NADH (to regenerate NAD+ for the tricarboxylic acid cycle and fatty-acid oxidation), reduces ubiquinone (the electrons are ultimately used to reduce oxygen to water) and transports protons across the mitochondrial inner membrane (to produce and sustain the protonmotive force that supports ATP synthesis and transport processes). Complex I is also a major contributor to reactive oxygen species production in the cell. Understanding the mechanisms of energy transduction and reactive oxygen species production by complex I is not only a significant intellectual challenge, but also a prerequisite for understanding the roles of complex I in disease, and for the development of effective therapies. One approach to defining a complicated reaction mechanism is to break it down into manageable parts that can be tackled individually, before being recombined and integrated to produce the complete picture. Thus energy transduction by complex I comprises NADH oxidation by a flavin mononucleotide, intramolecular electron transfer from the flavin to bound quinone along a chain of iron–sulfur clusters, quinone reduction and proton translocation. More simply, molecular oxygen is reduced by the flavin, to form the reactive oxygen species superoxide and hydrogen peroxide. The present review summarizes and evaluates experimental data that pertain to the reaction mechanisms of complex I, and describes and discusses contemporary mechanistic hypotheses, proposals and models.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3