Characterization of a novel intracellular heparanase that has a FERM domain

Author:

BAME Karen J.1,VENKATESAN Indumati1,DEHDASHTI Jean1,McFARLANE Jeffrey1,BURFEIND Rebecca1

Affiliation:

1. Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, U.S.A.

Abstract

The catabolism of cell-surface heparan sulphate proteoglycans is initiated by endosomal heparanases, which are endoglycosidases that cleave the glycosaminoglycans off core proteins and degrade them to shorter oligosaccharides. We have purified previously four intracellular heparanase activities from Chinese hamster ovary (CHO) cells [Bame, Hassall, Sanderson, Venkatesan and Sun (1998) Biochem. J. 336, 191–200], and in the present study we characterize further the most abundant activity (C1A heparanase). This enzyme purifies as a family of 37–48kDa proteins from both CHO cells and the rat liver, with the major species being 37 and 40kDa. Amino acid sequence analysis shows the purified C1A heparanase protein is highly homologous with the N-terminal domain, or FERM domain, of the ≈80kDa proteins ezrin, radixin and moesin (ERM proteins, after ezrin-radixin-moesin). This domain, which is also found in erythrocyte protein 4.1, links cytoplasmic proteins to membranes. Antibodies against the FERM domain recognize all the C1A heparanase proteins on Western blots, suggesting that the smaller species are derived from a larger protein. Activity binds to, and is affected by, molecules known to interact with FERM domains, supporting the hypothesis that the intracellular C1A heparanase is the purified FERM domain protein. Since bacterially expressed FERM domains of radixin and moesin lack heparanase activity, and some tryptic peptides generated from the enzyme do not have a match in any ERM protein, it appears that, rather than being derived from ezrin, radixin or moesin, C1A heparanase may be a new member of the FERM domain family.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3