Linear and cyclic peptides as substrates and modulators of P-glycoprotein: peptide binding and effects on drug transport and accumulation

Author:

SHAROM Frances J.1,LU Peihua1,LIU Ronghua1,YU Xiaohong1

Affiliation:

1. Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

One cause of multidrug resistance (MDR) in human cancers is the overexpression of the P-glycoprotein multidrug transporter, a member of the ABC superfamily of membrane proteins. Natural products and chemotherapeutic drugs are pumped out of the cell by P-glycoprotein in an ATP-dependent fashion. There is growing evidence that many hydrophobic peptides are also P-glycoprotein substrates. With the use of a fluorescence-quenching assay, we have shown that some linear and cyclic hydrophobic peptides interact with P-glycoprotein, whereas others do not. The measured values of the quenching constant, Kq, for interaction of peptides with P-glycoprotein ranged from 200 nM for cyclosporine A to 138 µM for the tripeptide N-acetyl-leucyl-leucyl-norleucinal. Peptides that interacted with P-glycoprotein in the fluorescence assay also blocked colchicine transport into plasma membrane vesicles from MDR cells. The values of Dm, the peptide concentration causing 50% inhibition of drug uptake, were highly correlated with the values of Kq, over three orders of magnitude. The P-glycoprotein ATPase stimulation/inhibition profile of the peptides was not helpful in making a quantitative assessment of the ability of a peptide to interact with P-glycoprotein or to block drug transport. Some hydrophobic peptides were able to restore accumulation in MDR cells of the chemotherapeutic drug daunorubicin and the fluorescent dye rhodamine 123 to the levels observed in the drug-sensitive parent. Peptides that interacted with P-glycoprotein also displayed a relatively low overall toxicity to intact MDR cells, and inhibited drug transport at concentrations below the toxic range. Hydrophobic peptides should be given serious consideration for development as clinical chemosensitizing agents.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3