eEF1A2 and neuronal degeneration

Author:

Abbott Catherine M.1,Newbery Helen J.1,Squires Charlotte E.1,Brownstein David2,Griffiths Lowri A.1,Soares Dinesh C.13

Affiliation:

1. Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, U.K.

2. Research Animal Pathology Core Facility, Room W3.03, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh EH16 4TJ, U.K.

3. School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K.

Abstract

Translation elongation factor eEF1A (eukaryotic elongation factor 1A) exists as two individually encoded variants in mammals, which are 98% similar and 92% identical at the amino acid level. One variant, eEF1A1, is almost ubiquitously expressed, the other variant, eEF1A2, shows a very restricted pattern of expression. A spontaneous mutation was described in 1972, which gives rise to the wasted phenotype: homozygous wst/wst mice develop normally until shortly after weaning, but then lose muscle bulk, acquire tremors and gait abnormalities and die by 4 weeks. This mutation has been shown to be a deletion of 15 kb that removes the promoter and first exon of the gene encoding eEF1A2. The reciprocal pattern of expression of eEF1A1 and eEF1A2 in muscle fits well with the timing of onset of the phenotype of wasted mice: eEF1A1 declines after birth until it is undetectable by 3 weeks, whereas eEF1A2 expression increases over this time. No other gene is present in the wasted deletion, and transgenic studies have shown that the phenotype is due to loss of eEF1A2. We have shown that eEF1A2, but not eEF1A1, is also expressed at high levels in motor neurons in the spinal cord. Wasted mice develop many pathological features of motor neuron degeneration and may represent a good model for early onset of motor neuron disease. Molecular modelling of the eEF1A1 and eEF1A2 protein structures highlights differences between the two variants that may be critical for functional differences. Interactions between eEF1A2 and ZPR1 (zinc-finger protein 1), which interacts with the SMN (survival motor neuron) protein, may be important in motor neuron biology.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3