Biosynthesis of heparin. The d-glucuronosyl- and N-acetyl-d-glucosaminyltransferase reactions and their relation to polymer modification

Author:

Lidholt K1,Lindahl U2

Affiliation:

1. Department of Veterinary Medical Chemistry, The Swedish University of Agricultural Sciences, Uppsala.

2. Department of Medical and Physiological Chemistry, University of Uppsala, S-751 23 Uppsala, Sweden

Abstract

Oligosaccharides with the general structure [GlcA-GlcNAc]n-GlcA-aMan (aMan is 2,5-anhydro-D-mannose), derived from the Escherichia coli K5 capsular polysaccharide, were found to serve as monosaccharide acceptors for a GlcNAc-transferase, solubilized from a mouse mastocytoma microsomal fraction and implicated in heparin biosynthesis. Digestion of these oligosaccharides with beta-D-glucuronidase yielded acceptors for the GlcA-transferase that acts in concert with the GlcNAc-transferase. Assays based on the oligosaccharide acceptors showed broad pH optima for the two enzymes, centred around pH 6.5 for the GlcNAc-transferase and around pH 7.0 for the GlcA-transferase. The GlcNAc-transferase showed an absolute requirement for Mn2+, whereas the GlcA-transferase was stimulated by Ca2+ and Mg2+ but not by Mn2+. The GlcNAc acceptor ability of the [GlcA-GlcNAc]n-GlcA-aMan oligosaccharides increased with increasing chain length, as reflected by the apparent Km, which was 60 microM for a hexasaccharide but 6 microM for a hexadecasaccharide. By contrast, the Km for [GlcNAc-GlcA]n-aMan oligosaccharides in the GlcA-transferase reaction was higher, approximately 0.5 mM, and unaffected by acceptor size. After chemical modification of the oligosaccharides to obtain mixed N-substituents (N-unsubstituted, N-acetylated or N-sulphated GlcN residues), GlcNAc transfer was found to be virtually independent of the N-substituent pattern of the acceptor sequence. The GlcA-transferase, on the other hand, showed marked preference for an acceptor with a non-reducing-terminal GlcNAc-GlcA-GlcNSO3- sequence, which would thus have a lower Km for the enzyme than the corresponding fully N-acetylated structure. These results, along with our previous finding that chain elongation in a mastocytoma microsomal system is strongly promoted by concomitant N-sulphation of the nascent chain [Lidholt, Kjellén & Lindahl (1989) Biochem. J. 261, 999-1007], raise the possibility that the glycosyltransferases and the N-deacetylase/N-sulphotransferase act in concert during chain elongation, assembled into an enzyme complex.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3