Regulation of phenobarbital-inducible cytochrome P-450s in rat and mouse liver following dexamethasone administration and hypophysectomy

Author:

Meehan R R12,Forrester L M1,Stevenson K1,Hastie N D2,Buchmann A3,Kunz H W3,Wolf C R1

Affiliation:

1. Imperial Cancer Research Fund, Laboratory of Molecular Pharmacology and Drug Metabolism, Department of Biochemistry, Hugh Robson Building, George Square, Edinburgh, U.K.

2. MRC Clinical and Population Cytogenetics Unit, Western General Hospital, Edinburgh, U.K.

3. Department of Biochemistry, German Cancer Research Centre, 6900 Heidelberg, Federal Republic of Germany

Abstract

Cytochrome P-450s are a superfamily of haem-containing proteins involved in the metabolism of foreign compounds, as well as a variety of endogenous molecules. The hepatic levels and function of this diverse group of enzymes are determined by both constitutive and xenobiotic regulators. To examine the role of constitutive factors in cytochrome P-450 regulation, the levels of three distinct groups of phenobarbital-inducible hepatic cytochrome P-450s were studied following dexamethasone-treatment or hypophysectomy. In the mouse, dexamethasone was a potent inducer of proteins within the PB1 (subfamily IIC), PB2c (family III) and PB3 (subfamily IIB) families. These findings were strikingly different from the effects in the rat where essentially no effect on PB3 expression and indeed suppression of proteins related to PB1 was observed. Determination of mRNA concentration indicated that the difference was at the level of transcription. These findings indicate that synthetic glucocorticoids have the potential to be potent phenobarbital-like inducing agents. In the mouse hypophysectomy, like dexamethasone, induced hepatic mRNA of P-450 from families P-450IIB, P-450IIC and P-450III. Again a species difference was observed as this treatment had essentially no effect in the rat. These data in the mouse indicate that factors produced in the pituitary can either affect the transcription rate of phenobarbital and dexamethasone-inducible P-450 genes or influence the stability of their mRNAs.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3